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Abstract 
We call “natural editing of algebraic expressions” the editing of algebraic expressions in 
their natural representation, the one that is used on paper and blackboard. This is an issue 
we have investigated in the Aplusix project, a project which develops a system aiming at 
helping students to learn algebra. The paper summarises first the Aplusix project. Second 
it presents a notion of algebraic expressions, of representations of algebraic expressions. 
The last section develops ideas about natural editing of algebraic expressions (insertion, 
deletion, selection, cut, copy, paste, drag and drop) and presents the choices made in the 
Aplusix system. 
 

1. Introduction 
In 2000, our team restarts from scratch the development of a new Interactive Learning Environment 
(ILE) with two main goals. The first main goal was to create an ILE for algebra allowing the student to 
freely build and transform algebraic expressions. The environment should provide epistemic feedback 
that can help in the first stages of the learning of algebra. At that time, there were no ILE for algebra 
that allowed students to freely build and transform algebraic expressions, as they do on paper, and to 
follow their own reasoning; the existing ILEs were, and most of them are still, command-based 
systems that did not allow the student to proceed without applying a command chosen from a menu. 
See MathXpert, [3] and Cognitive Tutor [7] as good examples of these command-based systems. So 
we decided to build a system to help students solve exercises in numerical calculations and formal 
algebra, where they would perform their own calculations by typing the expressions and making the 
steps they want, as on paper. The system, called APLUSIX, would gives feedbacks, mainly whether the 
calculations are correct or not, and whether the exercise is solved or not, those feedbacks depending on 
the semantics of algebraic expressions, and the syntactic form of the expression. 
The second main goal was to create an ILE that would be used for real. This goal requires building a 
usable and useful system. We considered two main points for usefulness: Encompassing a large 
mathematical domain and having several modes of functioning.  
 
Allowed students to freely build and transform algebraic expressions means building an advanced 
editor of algebraic expressions. We have developed such an editor from the questions “What do users 
expect when they do action A?” and not from the question “What is the simplest implementation of 
action A with the data structure we have?”. Of course, this lead immediately to display and edit the 
expression in their usual two-dimensions representation, but this is just the first step. The other steps 
consist of having often a structured behaviour (also called algebraic behaviour) but sometimes an 
unstructured behaviour for flexibility.  
 
This paper shortly describes (section 2) the Aplusix system in its current distributed version, some of 
its experiments, and a recent module devoted to a tree representation of algebraic expressions. Section 
3 develops the notion of algebraic expressions and representations of algebraic expressions. Section 4 
is devoted to the editing natural expressions, i.e., algebraic expressions in their usual representation 
system. 
 



2. Aplusix 
2.1. Short description of Aplusix 

 
APLUSIX is organized on the base of two editors, an advanced editor for algebraic expressions, and an 
editor for algebraic reasoning; these two editors have been constructed as microworlds. They permit 
numerical calculations and formal algebra activities like expansion, factorisation, and resolution of 
equations, inequations, and systems of equations with verification of the equivalence of expressions 
during the reasoning.  There is an immediate feedback showing whether two consecutive expressions 
are equivalent or not. Aplusix also provides solution and score on a sub-domain. 
 

In Aplusix, numbers may be written as integers, decimals, fractions and square roots. Exponents must 
be integers (positive, negative or zero). The domains of the current version are described in table 1. 
 

Type of exercise Domain of  
Verification of the calculations. 

Domain of 
Solutions and Scores. 

Numerical calculation The expressions must not include 
variables. 

The expressions must not 
include variables. 

Expansion Polynomial or rational expressions. Polynomial expressions. 
Factorisation  Polynomial expressions of one variable 

and maximum degree 4 or of two 
variable and maximum degree 2. 

Polynomial expressions of 1 or 2 
variables and maximum degree 
2. 

Solving equations Polynomial equations of one unknown 
and maximum degree 4 and rational 
equations giving such polynomial 
equations. 

Polynomial equations of one 
unknown with maximum degree 
2. 

Solving inequations Polynomial inequations of one unknown 
and maximum degree 4 and rational 
inequations giving such polynomial 
equations. 

Polynomial inequations of one 
unknown and maximum degree 
1. 

Solving systems of 
equations 

Systems of equations with maximum 10 
equations and 10 unknowns. 

Systems of equations with 2 
equations and 2 unknowns. 

Table 1. Domains of the current version of Aplusix. 
 
Commands for executing certain algebraic actions are available. These commands can be enabled or 
not, powerful or not, according to parameters set by the teacher, (they have to be adapted to the current 
level of understanding of the students in order to only present calculations they can do without 
difficulty). With this feature, such a computer system can provide an introduction to the proper use of 
a Computer Algebra System. There are ‘Calculate’, ‘Expand and reduce’, ‘Factor’ and ‘Solve’ 
commands. See example in figure 1. 
 
Besides the usual way of using Aplusix, called “training mode”, with immediate feedback, we 
implemented a test mode without immediate feedback. At the end of a test (often 10 exercises), or 
later, students can enter in a self-correction mode where they see their final answer with a score and 
with feedback, and can correct their errors with the help of immediate feedback. See figure 2. 
 
Last, the microworlds are embedded in a piece of software whose concern is the practical organisation 
of the learning process (login of the students, organisation of their work according to some prepared 
scenario, recording of the activities, scoring and statistical analysis of these activities made available 
for the teacher, tuning of the software with parameters, automated generation of exercises...). A longer 
description is given in [14]. 
 



 
 

 
1) Anna duplicates the given 
exercise and selects 2y  

 

 
2) She drags 2y  and drops it on 
the right hand side. 

 

 
3) She hits the “minus” key. 

 

 
4) Anna deletes 2 on the left, 
changes 4 to 2 on the right and 
inserts 2 as denominator of 2y  

 

 
5) She selects the value of x and 
makes a copy in the clipboard. 

 

 
6) Then she selects x in the second 
equation.  

 

 
7) And makes a paste that produces 
a substitution (the parentheses are 
added by the system). 

 

 
8) Then she selects the left hand 
side of the second equation. 

 

 
9) And she applies the “expand and 
reduce” command using the pop-up 
menu. 

Figure 1. How to solve a system of equations using drag&drop and the command “Expand and 
reduce”. 
 

 
Figure 2. On the left, Jeff has solved an exercise in the test mode, without feedback. On the right, he is 
looking at the result in the Self-correction mode. He can see his score (11/20), an incorrect 
calculation and a stricken “Solved”. He can click on “Modify the exercises and correct his error. 
 

2.2. Experimentation of Aplusix 
 
Many experiments have been conducted since 2002 in France, prepared by the researchers in 
mathematics education of our team. Most of them were carried out in the usual functioning of the 
class, using the computer lab and supervised by the teacher. Other experiments occurred in Brazil, 
Canada, Italy, India, and Vietnam. Different goals were pursued, generally two or three 
simultaneously.  



  
Perception of Aplusix by students and teachers 
The general opinion of teacher who used Aplusix is the following: The students work more, gain 
confident, work with autonomy and acquire knowledge. Teachers save time because of students’ 
autonomy and prepared exercises. They are better able to help students having difficulties with 
mathematics. See detailed opinions in [2]. 
Students like Aplusix. Even some students who dislike mathematics used Aplusix with pleasure. See 
comments of students in [1]. 
 
Contribution of Aplusix to the students’ learning  
Experiments with pre-test and post-test have been conducted, either in learning or remedial situations. 
Generally there were one or two students per computer. In one case in India, the students were in 
groups of 4. All the results are very positive; see [13] 
 
Use of Aplusix during all the school year 
Some teachers in France used Aplusix each time the subject studied can be exercised with Aplusix. At 
the end of the school year, they observed better result than previous classes. See [13]. 
 
Gathering data for student modelling 
As our team also works in automatic student modelling, some experiments had the goal to collect data 
for later analysis in the lab. See results in [15].   

2.3. Distribution 
 
Aplusix has currently publishers in France (since July 2005), UK (since January 2007), and Italy 
(since January 2007). The distribution will start in Benelux in August 2007. New publishers and 
distributors will be searched. 

2.4. Extension to tree representations of algebraic expressions 
 
In the framework of the European project ReMath [16], a new module devoted to tree representations 
of algebraic expressions has been developed [4]. The goal is to help students understanding algebraic 
expressions with a new register which is closer to the definition of algebraic expressions. This 
extension has been fully integrated to Aplusix (to a prototype): the students can choose between 4 
representations and modes at any step, except when the teacher has added constraints to the exercise. 
 
The 4 representations and modes are: 

1) The usual representation (or natural representation) which is the previous representation of 
Aplusix with its editor. 

2) The free tree representation which displays and edits expressions as trees without scaffolding: 
students can place in nodes whatever they want.  

3) The controlled tree representation which displays and edits expressions as trees with 
scaffolding: internal nodes of the trees must be known operators and must have a correct 
number of sons (correct arity); leaves must be integers, decimals, or variables.  

4) The mixed representation which is the controlled tree representation with the possibility to 
have complex expressions in the leaves in their usual representations. See figure 3. 

 
Two particular types of exercises have been added:  

1) Transform a usual representation into a tree representation. 
2) Transform a tree representation into a usual representation. 

 
The first experiments of the tree representation will occur in France and Italy in September 2007. 
 



 
 

Figure 3. In the mixed mode, the tree is partially expanded and can be expanded or collapsed using 
“+” and “-” button which appear when the mouse cursor is near a node. When one clicks on the “-” 
button near “*” on the tree on the left, one gets the tree on the right. 

 

3. Algebraic expressions and their representations 
3.1. Definition 

 
Given a set of symbols of operators (e.g., {+, –, *, /, ^, sqrt, =, ≠, <, ≤, >, ≥, and, or, not}), a set of 
symbols of terminal objects (e.g., the integers, the logical values true, false) and a set of symbols of 
variables (e.g., {x, y, z}), we define an algebraic expression as a finite construction obtained from the 
recursive definition given below, an algebraic expression is: 

- a symbol of terminal object, 
- or a  symbol of variable, 
- or symbol of operator applied to arguments which: 

o are algebraic expressions, 
o are in the right number (correct arity), 
o and have correct types. 

 
In this definition, symbols are elements that can be drawn on a paper or a screen; expressions have 
types (e.g., 67 has the Integer type; true has the Boolean type). 
 
This definition is borrowed from the rewrite rule theory [5]. It only concerns well-formed expressions. 
Note that as far as editing of algebraic expressions is concerned, a notion of ill-formed expressions is 
necessary, first, because during the construction and the modification of a well-formed expression, one 
passes by stages where the expression is ill-formed (e.g., to get 3+x, we have the intermediates stages 
3 and 3+, the last one being ill-formed), second because there are situations were we want to allow ill-
formed expressions, like in education at some stages. 
 
The definition contains concrete elements (the symbols), the global notion being abstract. It does not 
tell us how to represent algebraic expressions. 

3.2. Representations  
 
There are several ways for representing algebraic expressions. We list here the main ones. 
 
Representation in natural language 
Example:  The sum of x and the power of y and 3. 
In this example, the symbols of operators have been changed (sum instead of +, power instead of ^). 
Such representation is possible only for small expressions; for large one, it is not possible to indicate 
which part is an argument of which operator.  
 



Functional representations 
Examples:  +(x, ^(y, 3)) sum(x, power(y, 3)) (+ x (^ y 3)) 
These representations are very close to the definition and have no ambiguity. Large expressions are 
difficult to understand by human, but not by computers. The last one is the representation used in 
functional languages like Lisp. 
 
Linear representation 
Example:  x+y^3 
This representation needs priorities between operators, rules for operators of same priority and 
parentheses. At the beginning, it is the representation used for source code of computer programs. 
Large expressions are difficult to understand by human, but not by computers. 
 
Tree representation 

Example:   
This representation shows very clearly the structure of the expression. It needs neither priority 
between operators, nor parenthesis, but it needs a large place for large expressions. It can be 
interesting at some stage of the learning of algebra to help understanding the structure. 
 
Natural representation 
Example: 3yx +  
This is the representation usually used on paper and blackboard. That is why we call it natural 
representation by analogy with natural language. It can also be called usual representation. 
The natural representation is complex: it has hidden operators (like * in xy and ^ in 3y ), it needs 
priorities between operators and parentheses. 
 
Latex 
Example: $x+y^2$ 
Latex is a rather old representation used by many scientific communities. 
 
Recent computer representations (MathML, OpenMath) 
These representations are computer oriented and based on extensions of XML. They are tree-based 
representations. Table 2 show an example of representation in Content MathML, Presentation 
MathML, and OpenMath. They are not supposed to be 
 

Content MathML Present.  MathML OpenMath 
<apply> 
   <plus/> 
   <ci>x</ci> 
   <apply>  
      <power/>  
      <ci>y</ci>  
      <cn>3</cn>  
   </apply> 
</apply> 

<math xmlns=…>  
  <mrow>  
    <mi>x</mi>  
    <mo>+</mo>  
    <msup>  
      <mi>y</mi> 
      <mn>3</mn> 
    </msup>  
  </mrow>  
</math> 

<OMOBJ> 
  <OMA> 
    <OMS cd="arith1" name="plus"/> 
    <OMV name="x"/> 
    <OMA> 
      <OMS cd="arith1" name="power"/> 
      <OMV name="y"/> 
      <OMI>3</OMI> 
    </OMA> 
  </OMA> 
</OMOBJ> 

Table 2. Representation of  3yx +  in Content MathML, Presentation MathML, OpenMath. 



 
Readability and internal representation 
 
The readability of representations is very different depending the reader is a human or a computer. 
Table 3 shows readability rates according to the author’s opinion.  
 

Representation name Example of small representation Human 
readability 

Computer 
readability 

Natural language The sum of x and the power of y and 3 10% 1% 
Functional representation sum(x, power(y, 3)) 10% 100% 
Linear representation x+y^3 50% 100% 
Tree representation See above 30% 1% 
Natural representation 3yx +  100% 1% 

Latex $x+y^2$ 10% 100% 
MathML and OpenMath See above 1% 100% 

Table 3. Seven sorts of representation and their readability. Readability means capacity to read 
medium and large representations as there are (e.g., characters and lines on a two dimensions area 
for the tree representation). The percentages come from the author’s opinion.  
 
Note that the very low computer readability of the tree representation and the natural representation 
correspond to a situation which is not the most frequent: the case where symbols are written on a two 
dimensions area like a paper sheet that would be scanned. A more usual situation is a computer screen 
where the representation is drawn by the computer from an internal representation of the expression. 
In that case, the computer has not to read the representation, it has just to act on it and use its internal 
representation to do that. 
 
Algebraic expressions are abstractions 
 
While in classical contexts, like education, algebraic expressions appear as representations of semantic 
objects (e.g., )4(3 2 −xx  is a representation of a polynomial and xx 123 3 −  is another representation 
of the same polynomial), the current section shows that algebraic expressions are abstractions having 
several sorts of representations. 

3.3. Syntax and semantics 
 
Above there is a pure syntactical definition. According to this definition, “+” is a constructor of 
expressions, an operator which can be applied to 3 and 5, giving 3+5, not a function which would have 
made a calculation and which would have produced 8. 
 
Semantic objects are usually associated to algebraic expressions, e.g., numbers, polynomials, rational 
fractions, functions, sets (like sets of solutions of equations). Such associations are made by the 
association of a function to each symbol of operator, for example, for the “+”symbol, it can be the 
addition of numbers, or the addition of polynomials, or the addition of functions.  
 
The choice of semantic objects introduces a general notion of equivalence: given a set of semantic 
objects, two algebraic expressions are equivalent if and only if they are associated to the same 
semantic object.  
 
See more on syntax and semantics in [12]. 
 



4. Editing natural expressions 
 
From now, we only consider natural representations of algebraic expressions which are called natural 
expressions for simplification purpose. We consider that humans prefer to use this representation 
system and discuss the way they are graphically represented and how they can be edited. 

4.1. The text&box view 
 
Natural expressions are drawn in a 2D (two-dimensions) space and can be viewed as composed of 
texts (sequences of characters), of boxes with invisible borders and of drawings of particular operators. 
Box are necessary when the natural representation of an expression cannot be made in one-dimension. 
Boxes can contain one-dimension expressions and other boxes according to different 2D modes of 
association. For example, a fraction is composed of a line (drawing of the divide operator) with a box 
above and a box under for the arguments (which are any expressions). We can also consider a 
surrounding box for a fraction. See figure 4. 
 

 
Figure 4. Text&box view. The borders of the boxes have been drawn. 

 
There are box operators like divide, power sqrt, and (when it is represented by a left brace “{”) , and 
text operators like +,  –, sin, =, <, or.  

4.2. Text&box editors 
 
We call text&box editors, editors which follow the text&box view without additional features. This is 
the case of many 2D editors like Microsoft Equation Editor [11], MathType 5.2 [10] and WIRIS [9, 
17] the editor used in the LeActiveMath ILE [8]. Figure 5 shows two examples of expressions 
displayed by a text&box editor. 
 
These editors allow many sorts of ill-formed expressions: any character can be input at any place of a 
text part. The only elements which have a clear meaning are the box operators. They are generally 
obtained through buttons. Often, characters that would benefit to be associated to box operators (like 
“/” and the divide operator) are not. 
 

)4
3

52/( +⎟
⎠
⎞

⎜
⎝
⎛ ++ yxx   ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−+
<<<

world
hello %/*(  

Figure 5. Two Text&box expressions that can be built with the Microsoft Equation Editor MathType 
and WIRIS. On the left, a strange quasi-well-formed expression: the “/” key has been used for x over 2 
and the fraction button has been used for x over 3; the parentheses keys have been used at the 
beginning and at the end, and a parenthesis button has been used inside. 

4.3. Syntactical basic enhancement 
 
Here are four features in order to improve the basic editing of natural expressions: 
 

1) Operators recognition: “/” is recognized as divide and produces a fraction, “sqrt” is recognized 
as square root and produces a square root, “and” is recognized as and and produces a left 
brace “{”, etc. 



2) Parenthesis recognition: “(“ and “)” are recognized as parentheses and associated to existing 
parentheses when possible (see figure 6) 

3) Arity representation: when an operator does not have enough arguments, places for the 
missing arguments are drawn (see figure 7), 

4) Incorrect type indication (see figure 8), 
 

 
Figure 6. From Aplusix: On the left, there is an unbalanced “(”. When a “)” is typed, it is associated 
to this“(”  and the parenthesis size is adapted to the content.  
 

 
Figure 7. From Aplusix: “?” represents a missing argument, both in box operators like divide and in 
text operators like plus. 
 

 
Figure 8. From Aplusix: “x=5” is drawn in blue to indicate an incorrect type. 

4.4. Enhanced Backspace and Delete 
 
In tex&box editors Backspace with an insertion point inside a box and placed on the left of the content 
does nothing (Microsoft Equation Editor) or suppresses the box (MathType), see figure 9. This can be 
improved by deleting the operator. For a unary operator, one can delete the operator and keep the 
argument, as WIRIS does for the square root in a text way (figure 10) and as Aplusix does in a 
structured way (figure 11). For a binary operator, one can keep the main argument or the two 
arguments. See in figure 12 how to suppress common denominators with Aplusix. Similar behaviour 
can be implemented for the delete key. 

 

 
Figure 9. From MathType. The insertion point is inside the square root, on the left. Hitting backspace 
selects the square root and its content. Hitting backspace again suppresses the square root. 

 

 
Figure 10. From WIRIS. The insertion point is inside the square root, on the left. Hitting backspace 
selects the square root (without the content). Hitting again backspace suppresses the square root and 
keeps the content in a text way. 

 

 
Figure 11. From Aplusix. The insertion point is inside the square root, on the left. Hitting backspace 
suppresses the square root in a structured way that makes parentheses appear. 
 



 
Figure 12. From Aplusix. The student put all the terms to the common denominator 6. Then, he/she 
wants to suppress the 3 denominators. He/she has only to place the insertion point on the right of each 
denominator and hit twice backspace (first, the system replaces 6 by ? and second it deletes the 
denominator and keeps the numerator in a structured way, that is why parentheses appear). 

4.5. Algebraic selection 
 
Text&box editors allow the selection of parts of the expression regardless the structure (figure 13). The 
selection is not linked with the notion of sub-expression. 
 

 
Figure 13. From Microsoft Equation Editor, MathType and WIRIS: Three examples of selection. 

 
When places for missing arguments are drawn, it is possible to implement a selection which respects 
the structure, i.e., the sub-expression. For example, in (2 )( 1) 2x y z+ + − , let us drag left to right over 
x, x is selected; when we continue over +, the selection becomes 2 1x + , when we continue over “)”, 
the selection becomes (2 )x y+ , when we continue over “(” the selection becomes (2 )( 1)x y z+ + .  
Furthermore, when a selection is present, crtl-click can be implemented to extend the selection for 
associative operators (figure 14) as in many systems. 
We call algebraic selection this selection mechanism. 
 

 
Figure 14. From Aplusix. On the left, 4x is selected. A ctrl-click on 3 or x or 2 on the right part 

produces the selection displayed on the right in order to have a selection of sub-expression.  

4.6. Operations on a selection 
 
Input on a selection 
 
In Text&box editors insertion over a selection of a character (e.g., x, 4, =) replaces the selection (this is 
the general mechanism of text editors) while a click on a button corresponding to a box operator 
applies the operator to the selection (figure 15).  
 

 
Figure 15. From MathType: What happens with a selection when one hits “–” (in the middle) 

or clicks on the fraction button (on the right). 
 
This can be made more homogenous this way: (1) When the input is an operator, a box operator or 
not, obtained with a hit of a key or a click on a button, applies the operator to the selection as main 
argument; (2) In the other cases, replace the selection by the input. In the case of the minus sign, it can 



be improved by considering a change of sign, i.e., if the selection is –3x, getting 3x instead of –(–3x), 
see figure 16. 
 

 
Figure 16. From Aplusix. A hit of “–” over a selection of the form “–A”.  

 
 
Paste over a selection 
 
When an editor implements an algebraic selection, paste over a selection can be performed according 
to an algebraic way which correspond to a substitution, see figure 17. 
 

 
Figure 17. From Aplusix. Paste when z is selected and 3-2x+3y is in the clipboard. This operation is 

viewed as a substitution and parentheses are added when necessary. 

4.7. Paste on the insertion point and Drag&drop 
 
In texts, paste and drop on the insertion point consists of placing a copy of the clipboard at the 
insertion point side to side with the text of this place. This has meaning because concatenation has 
meaning for texts. For algebraic expressions, the link between expressions is made by operators. If we 
want to combine 4 and 12, we choose to do that with “+” or “/”, etc. Placing side to side x and y, 
which gives xy, has meaning because there are implicit operators (times in this situation). A general 
behaviour for an editor would be to let the user choose the operator. But this may be a bit heavy. 
Another way would be to provide a way to easily change the operator used for paste. In the case of 
Aplusix, we have implemented the second choice, limiting the operators to the operators of variable 
arity and of the right type, see figures 18 and 19. 
 

 
Figure 18. 12 is pasted when the insertion point is before 3. Aplusix pastes 12 with the “+” operator 

(because it is the upper numerical operator of variadic arity at this position). A hit on the “AltGr” key 
changes the paste operator to “*”.Another hit on the “AltGr” key changes the paste operator to the 

composition of numbers. 
 

 
Figure 19. x+y=1 is pasted when the insertion point is after 6. Aplusix pastes x+y=1 with the “and” 

operator (possible logical operator of variadic arity at this position). A hit on the “AltGr” key 
changes the paste operator to “or”. 

 
This is a structural, or algebraic, way of performing paste and drop. 
 
Besides this structural drag&drop, there is also an equivalent drag&drop which consists of moving a 
sub-expression inside a global expression and preserving the equivalence of the global expression.  
Such functionality is implemented in the GraphingCalculator [6]. This software allows to manipulate 
the expressions algebraically with the mouse, according to the author’s concept “the calculator 
preserves equality” during these manipulations. 



 
Moving arguments of a commutative operator is the first natural form of equivalent drag&drop (e.g., 
moving 43x  to the left in 3 2 42 3x x x+ +  provides 3 4 22 3x x x+ +  if the drop is before 43x  and 

4 3 23 2x x x+ +  if the drop is before 32x ). In this particular situation, the structural drag&drop does 
the same thing if the drop is made with the operator.  
A second natural form of equivalent drag&drop consists of moving an additive sub-expression from a 
side of an equation (or inequality) to the other side, changing its sign (e.g., in 2 5 6x x+ = −  moving 

6− to the left provides 2 5 6 0x x+ + = ). 
A third natural form of equivalent drag&drop consists of moving a multiplicative sub-expression from 
a side of an equation (or inequality) to the other side (e.g., in 5 6x = −  moving 5 to the right 

provides 6
5

x = − ). Other forms are proposed in table 4. They are based on factorisations or reductions. 

 
Expression Selected sub-expression Place of the drop Result Type of action 

2 23 1x x− +  2x  over 23x  24 1x −  Reduction 

))(1( 2xxy +−  first occurrence of x  Between )( )1()1( xxy +−  Factorisation 
2)(xy  x  Before ( 22 yx  Factorisation 

x+4  4 Before sqrt 
412 x+  

Factorisation 

 
Table 4. Examples of equivalent drag&drop with basic operators. 

 

5. Conclusion 
 
There is a representation which has been built by humans during several centuries and which is called 
here natural expression. If, at some learning stage, it is good for students to use the natural language 
representation and the tree representation, and to perform changes of semiotic systems to better 
understand the notion of algebraic expressions, the rest of the time there is no reason for human to use 
another representation system. 
 
Software developers are going little by little to fully manipulate natural expression. First, many of 
them took care of the presentation. Second, some of them took care of the editing in a text&box 
framework. The last step consists of introducing manipulations which correspond more to the user 
needs. Many answers can be found by asking the right question which is: “As a user, what would I 
like to get when I do that with the editor?” instead of considering that “With my internal 
representation the answer to this action is that”.  
 
In this paper, we only considered input with mouse and keyboard. Input with a pen and hand writing 
introduces new facilities which have already been investigated by some projects. 
 

6. References 
[1] Aplusix: Comments of students. http://aplusix.imag.fr/en/  (Information / Comments (students)) 

[2] Aplusix: Opinions of teachers. http://aplusix.imag.fr/en/  (Information / Opinions (teachers)) 

[3] Beeson M. (1996). Design Principles of Mathpert: Software to support education in algebra and 
calculus, in: Kajler, N. (ed.) Human Interfaces to Symbolic Computation, Springer-Verlag. 



[4] Bouhineau, D., Chaachoua H., Nicaud, J.F., Viudez C. (2007). Adding new Representations of 
Mathematical Objects to Aplusix. Proceedings of the ICTMT-8 conference. Hradec Králové, Czech 
Republic. 

[5] Dershowitz N, Jouannaud J.P. (1989). Rewrite Systems. Handbook of Theoretical Computer 
Science, Vol B, Chap 15. North-Holland. 
[6] Graphing Calculator, http://www.PacificT.com 

[7] Koedinger, K.R., Anderson, J.R., Hadley, W.H. and Mark, M.A. (1997). Intelligent tutoring goes 
to school in the big city. International Journal of Artificial Intelligence in Education 8, (pp. 30–43). 

[8] LeActiveMath project. http://www.leactivemath.org/ 

 [9] Marquès D., Eixarch R., Casanellas G., Martínez B., Smith T. (2006). WIRIS OM Tools a 
Semantic Formula Editor. Porceedings of MathUI 2006.  

[10] MathType 5.2. http://www.dessci.com/en/products/mathtype/ 

[11] Microsoft Equation Editor. http://office.microsoft.com/en-gb/word/HP051902471033.aspx 

[12] Nicaud, J.F., Bouhineau, D. and Gélis J.M. (2001). Syntax and semantics in algebra. Proceedings 
of the 12th ICMI Study Conference. The University of Melbourne. 

[13] Nicaud J.F., Bittar M., Chaachoua H., Inamdar P., Maffei L. (2006). Experiments With Aplusix 
In Four Countries. International Journal for Technology in Mathematics Education, Volume 13, No 1. 

[14] Nicaud, J.F., Bouhineau, D., Chaachoua H. (2004). Mixing Microworld and CAS Features for 
Building Computer Systems that Help Students to Learn Algebra. International Journal of Computers 
for Mathematical Learning 9, p. 169-211.  

[15] Nicaud, J.F., Chaachoua H., Bittar M. (2006).Automatic calculation of students’ conceptions in 
elementary algebra from Aplusix log files. Proceedings of the 8th International Conference on 
Intelligent Tutoring Systems (ITS2006), LNCS n° 4053, Springer-Verlag. 

[16] ReMath project. http://remath.cti.gr/ 

[17] WIRIS editor. http://www.wiris.com 
 
 


